If ((1 + i)/(1 - i))^x = 1, then
If ((1 + i)/(1 - i))x = 1, then
- x = 4n, where n is any positive integer.
- x = 2n, where n is any positive integer.
- x = 4n + 1, where n is any positive integer.
- x = 2n + 1, where n is any positive integer.
Solution
[(1 + i)/(1 - i)]x = 1
[(1 + i)(1 + i)/(1 - i)(1 + i)]x = 1
[(1 + i2 + 2i)/(1 - i2)]x = 1
i2 = -1
(2i/2)x = 1
ix = 1
ix = i4n
x = 4n
The correct option is A.