If ((1 + i)/(1 - i))^x = 1, then

If ((1 + i)/(1 - i))x = 1, then

  1. x = 4n, where n is any positive integer.
  2. x = 2n, where n is any positive integer.
  3. x = 4n + 1, where n is any positive integer.
  4. x = 2n + 1, where n is any positive integer.

Solution

[(1 + i)/(1 - i)]x = 1

[(1 + i)(1 + i)/(1 - i)(1 + i)]x = 1

[(1 + i2 + 2i)/(1 - i2)]x = 1

i2 = -1

(2i/2)x = 1

ix = 1

ix = i4n

x = 4n

The correct option is A.