Let z1 and z2 be two roots of the equation z^2 + az + b = 0
Let z1 and z2 be two roots of the equation z2 + az + b = 0, z being complex further, assume that the origin, z1 and z2 form an equilateral triangle, then
- a2 = 4b
- a2 = 3b
- a2 = 2b
- a2 = b
Answer
As z1, z2 are roots of z2 + az + b
z1 + z2 = –a and z1 z2 = b
Again 0, z1, z2 are vertices of an equilateral triangle.
Therefore, 02 + z12 + z22 = 0z1 + z1z2 + 0z2 = 0
z12 + z22 = z1z2
(z1 + z2)2 = 3z1z2
The correct option is B.